Efecto de diversas láminas de riego sobre las etapas fenológicas del cultivo de tomate (Solanum lycopersicum L.), en municipio de Totogalpa, corredor seco de Nicaragua

Autores/as

  • Javier Antonio Barberena Moncada Centro para la Investigación en Recursos Acuáticos de Nicaragua. CIRA/UNAN-Managua, Nicaragua https://orcid.org/0000-0001-9119-4485

DOI:

https://doi.org/10.5377/farem.v12i48.17532

Palabras clave:

Déficit hídrico, estrés hídrico, fenología de tomate, láminas de riego, tiempo termal, uso eficiente de agua

Resumen

El calentamiento global ha provocado que se busquen alternativas genéticas para hacer los cultivos resistentes a condiciones secas y temperaturas extremas, también se buscan métodos para suplir la demanda hídrica de los cultivos en época seca o en inviernos con reducidas precipitaciones. Técnicas como los sistemas de riego por goteo han solucionado la necesidad hídrica de diversos cultivos, maximizando el consumo de agua, y reduciendo las perdidas por escorrentía. La presente investigación se basó en evaluar el efecto de la aplicación de diferentes láminas de riego sobre las etapas fenológicas del cultivo de tomate (Solanum lycopersicum L.) en el municipio de Totogalpa, corredor seco de Nicaragua. Las láminas de aguas suplieron el 60% (T1), 80% (T2) y 100% (T3) de las pérdidas de agua por evapotranspiración en las plantas de tomate. Se utilizó un diseño completo al azar con tres repeticiones. el experimento fue al aire libre en Totogalpa, Nicaragua. Las etapas vegetativas y reproductivas de la planta de tomate fueron determinadas mediante modelo de tiempo térmicos (GDD). Pruebas de significancias al 0.05% fueron realizadas para determinar si había diferencias entre los tratamientos. Resultados obtenidos indican que la etapa vegetativa necesita 502 GDD a los 34 días después del trasplantes (DDT), con diferencias (p < 0.05) en las variables diámetro de tallo principal y número de hojas; la etapa reproductiva 1200 GDD y 77 DDT para generar la maduración y cosecha del fruto; y en la etapa reproductiva se encontraron diferencias (p< 0.05) entre los tratamientos en cuanto a número de flores/planta, número de frutos/planta, diámetro polar y ecuatorial de fruto y peso de fruto. Entre los tratamientos los mejores resultados se dan al suplir el 100% de pérdidas por evapotranspiración en las plantas de tomate, debido a que presentan los mejores promedios en la etapa vegetativa y reproductiva.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aikman, D. P. (1996). A procedure for optimizing carbon dioxide enrichment of a glasshouse tomato crop. Journal of Agricultural and Engineering Research, 63(2), 171–183. https://doi.org/10.1006/jaer.1996.0019

Ali, M. H., & Talukder, M. S. U. (2008). Increasing water productivity in crop production-A synthesis. Agricultural Water Management, 95(11), 1201–1213. https://doi.org/10.1016/j.agwat.2008.06.008

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos (FAO, Issue Estudio FAO. Riego y Drenaje). FAO. https://www.fao.org/3/x0490s/x0490s00.htm

Álvarez-Herrera, J. G., López, J. L., Balaguera, W. A., Merchán, J. B., & Veloza, J. A. (2012). Láminas de riego y calidad de agua en la solución de problemas de sali nidad en tomate (Solanum lycopersicum L.). Revista Colombiana de Ciencias Hortícolas, 5(1), 57–68. https://doi.org/10.17584/rcch.2011v5i1.1253

Álvarez-Herrera, J., H, B.-L., & Chacón, E. (2010). Efecto de la aplicación de diversas láminas y frecuencias de riego en la propagación del romero ( Rosmarinus officinalis L . ) The effect of applying different water levels and irrigation frequencies in. Ingeniería e Investigación, 30(1), 86–90.

Ardila R., G., Fischer, G., & Balaguera López, H. E. (2012). Caracterización del crecimiento del fruto y producción de tres híbridos de tomate (Solanum lycopersicum L.) en tiempo fisiológico bajo invernadero. Revista Colombiana de Ciencias Hortícolas, 5(1), 44–56. https://doi.org/10.17584/rcch.2011v5i1.1252

Ayarna, A. W., Tsukagoshi, S., Nkansah, G. O., & Maeda, K. (2021). Effect of Plant Density on the Yield of Hydroponically Grown Heat-Tolerant Tomato under Summer Temperature Conditions. American Journal of Plant Sciences, 12(06), 901–913. https://doi.org/10.4236/ajps.2021.126060

Balaguera, H. E., Álvarez-Herrera, J., & Rodríguez, J. D. (2008). Efecto del déficit de agua en el trasplante de plántulas de tomate (Solanum lycopersicum L.). Agronomía Colombiana, 26(2), 246–255. http://hdl.handle.net/20.500.12324/34753

Barraza, F. V., Fischer, G., & Cardona, C. E. (2004). Estudio del proceso de crecimiento del cultivo del tomate (Lycopersicon esculentum Mill.) en el Valle del Sinú medio, Colombia. Agronomía Colombiana, 22(1), 81–90. http://www.redalyc.org/articulo.oa?id=180317823011

Bertin, N., & Génard, M. (2018). Tomato quality as in fl uenced by preharvest factors. Scientia Horticulturae, 233, 264–276. https://doi.org/10.1016/j.scienta.2018.01.056

Caicedo-Lopez, L. H., Contreras-Medina, L. M., Gerardo, R., Perez-Matzumoto, A. E., Ruiz-Rueda, A., Helena, L., Contreras-Medina, L. M., Guevara-Gonzalez, G., Perez-Matzumoto, A. E., Ruiz-Rueda, A., Caicedo-Lopez, L. H., & Contreras-Medina, L. M. (2020). Effects of hydric stress on vibrational frequency patterns of Capsicum annuum plants Effects of hydric stress on vibrational frequency patterns of Capsicum annuum plants. Plant Signaling & Behavior, 15(7). https://doi.org/10.1080/15592324.2020.1770489

Calero H., A., Quintero R., E., Pérez D., Y., Olivera V., D., Peña C., K., Castro L., I., & Jiménez H., J. (2019). Evaluación de microorganismos eficientes en la producción de plántulas de tomate (Solanum lycopersicum L.). Revista de Ciencias Agrícolas, 36(1), 67–78. https://doi.org/10.22267/rcia.193601.99

Calvo-Solano, O. D., Quesada-Hernández, L. E., Hidalgo, H., & Gotlieb, Y. (2018). Impactos de las sequías en el sector agropecuario del Corredor Seco Centroamericano. Agronomía Mesoamericana, 29(3), 695. https://doi.org/10.15517/ma.v29i3.30828

Casierra-Posada, F., Constanza Cardozo, M., & Cárdenas-Hernández, J. F. (2007). Análisis del crecimiento en frutos de tomate (Lycopersicon esculentum Mill .) cultivados bajo invernadero. Agronomía Colombiana, 25(2), 299–305.

Casierra Posada, F., Cardozo, C. M., & Cárdenas-Hernández, J. F. (2007). Análisis del crecimiento en frutos de tomate (Lycopersicon esculentum Mill.) cultivados bajo invernadero. 25(2), 299–305. http://hdl.handle.net/20.500.12324/979

Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076

Duarte-Canales, H. A., & Benavides González, Á. (2020). Riego por goteo en cultivares de tomate (Solanum lycopersicum L.), Universidad Nacional Agraria, Managua, Nicaragua. La Calera, 20(34), 35–40. https://doi.org/10.5377/calera.v20i34.9811

Enriquez-Reyes, S., Alcántar-González, G., Castellanos-Ramos, J., Arjona Suárez, E., González-Eguiarte, D., & Lazcano-Ferrat, I. (2003). Nutrición Mineral Acoplada Al Crecimiento (Numac): Nutrición Con N Para Tomate En Invernadero 3. Evaluación del Modelo. Terra Latinoamericana, 1(2), 185–193. http://redalyc.uaemex.mx/redalyc/html/573/57315595005/57315595005_1.html

FAO. (2013). Captación Y Almacenamiento De Agua De Lluvia. In Santiago de Chile.

Fraga, F. (2020). Corredor seco Centroamericano: Una visión exploratoria sobre el contexto, las razones y el potencial de una estrategia de creación de empleo en Guatemala y Honduras (O. I. del Trabajo (ed.); Primera Ed, Issue 23). www.ifrro.org

Gallardo, M., Thompson, R. B., Valdez, L. C., & Fernández, M. D. (2006). Use of stem diameter variations to detect plant water stress in tomato. Irrigation Science, 24(4), 241–255. https://doi.org/10.1007/s00271-005-0025-5

Gliessman, S. R. (2002). Agroecología: Procesos ecológicos en agricultura sostenible. In Diversidad y estabilidad del agroecosistema (CATIE). CATIE.

Goldhamer, D. A., & Fereres, E. (2001). Irrigation scheduling protocols using continuously recorded trunk diameter measurements. Irrigation Science, 20(3), 115–125. https://doi.org/10.1007/s002710000034

González Meza, A., & Hernández Leos, B. A. (2000). Estimación de las necesidades hídricas del tomate. Terra Latinoamericana, 18(1), 45–50.

Guaymasí, D. V. (2015). Estudio de la respuesta fenológica a través de la determinación del tiempo térmico de las Solanáceas más producidas en el Cinturón Hortícola Platense. In Tesis doctoral. Universidad Nacional de La Plata.

Guichard, S., Bertin, N., Leonardi, C., & Gary, C. (2003). Tomato Fruit quality in relation to water and carbon fluxes. Agronomie, 21(4), 385–392. https://doi.org/10.1051/agro:2001131

Hannah, L., Donatti, C. I., Harvey, C. A., Alfaro, E., Rodriguez, D. A., Bouroncle, C., Castellanos, E., Diaz, F., Fung, E., Hidalgo, H. G., Imbach, P., Läderach, P., Landrum, J. P., & Solano, A. L. (2017). Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America. Climatic Change, 141(1), 29–45. https://doi.org/10.1007/s10584-016-1867-y

Hazra, P., Samsul, H., Sikder, D., & Peter, K. (2007). Breeding tomato (Lycopersicon esculentum Mill) resistant to high temperature stress. International Journal of Plant Breeding, 1(1), 31–40. http://www.globalsciencebooks.info/Online/GSBOnline/images/0706/IJPB_1(1)/IJPB_1(1)31-40o.pdf

Ho, L. (1996). The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. Journal of Experimental Botany, 47(Special_Issue), 1239–1243. https://doi.org/https://doi.org/10.1093/jxb/47.Special_Issue.1239

Ho, L. C., Grange, R. I., & Picken, A. J. (1987). An analysis of the accumulation of water and dry matter in tomato fruit. Plant, Cell & Environment, 10(2), 157–162. https://doi.org/10.1111/1365-3040.ep11602110

INIDE. (2022). Anuario Estadístico 2020. https://www.inide.gob.ni/docs/Anuarios/Anuario20/Anuario_Estadistico_2020.pdf

IPCC. (2019). El cambio climático y la tierra. 40.

Jiménez-Martínez, E., Gutiérrez Sandoval, W. A., & González Madrigal, C. A. (2010). Evaluacion de cuatro variedades de tomate industrial (Lycopersicum esculentum, Mill) en el rendimiento y tolerancia al complejo mosca blanca (Bemisia tabaci Gennadius)-Geminivirus. La Calera, 10(15), 5–15.

Jiménez-Martínez, E., Ríos-Peralta, H. T., & Somarriba-Moncada, O. A. (2015). Evaluación de productos botánicos para manejo de mosca blanca (Bemisia tabaci Gennadius) y pulga del tomate (Halticu ssp) en el cultivo de tomate (Solanum lycopersicum Mill.), en Nicaragua. La Calera, 15(25), 63–69.

Juárez-Maldonado, A., De Alba Romenus, K., Zermeño González, A., & Benavides Mendoza, A. (2017). Análisis de crecimiento del cultivo de tomate en invernadero. Revista Mexicana de Ciencias Agrícolas, 6(5), 943–954. https://doi.org/10.29312/remexca.v6i5.589

López Ubeda, P. E., & Coleman Beer, E. R. (2016). Efecto de tres láminas de riego por goteo y tres distancias de siembra en el cultivo de tomate (Solanum lycopersicum L.) Cv. UC-82, Universidad Nacional Agraria, Managua [Universidad Nacional Agraria]. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Frepositorio.una.edu.ni%2F3415%2F1%2Ftnf06l864.pdf&clen=1917390&chunk=true

Magaña, V. O., Amador, J. A., & Medina, S. (1999). The Midsummer Drought over Mexico and Central America. Journal of Climate, 12(6), 1577–1588. https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2

Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water (Switzerland), 7(3), 975–992. https://doi.org/10.3390/w7030975

Ortega-Martínez, L. D., Sánchez-Olarte, J., Ocampo-Mendoza, J., Sandoval-Castro, E., Salcido-Ramos, B. A., & Manzo-Ramos, F. (2010). Efecto de diferentes sustratos en crecimiento y rendimiento de tomate (Lycopersicum esculentum Mill) bajo condiciones de invernadero. / Effect of different substrates on the growth and yield of tomato (Lycopersicum esculentum Mill) under greenhouse condit. Ra Ximhai Revista de Sociedad, Cultura y Desarrollo Sustentable, 6(3), 339–346. http://www.redalyc.org/articulo.oa?id=46116015002

Páez, A., Paz, V., & López, J. . (2000). Crecimiento y respuestas fisiológicas de plantas de tomate cv . Río Grande en la época mayo-julio. Efecto del sombreado. Fac.Agron, 17(2), 173–184. https://produccioncientificaluz.org/index.php/agronomia/article/view/26349

Pathak, T. B., & Stoddard, C. S. (2018). Climate change effects on the processing tomato growing season in California using growing degree day model. Modeling Earth Systems and Environment, 4(2), 765–775. https://doi.org/10.1007/s40808-018-0460-y

Pearce, B. D., Grange, R. I., & Hardwick, K. (1993a). The growth of young tomato fruit. I. Effects of temperature and irradiance on fruit grown in controlled environments. Journal of Horticultural Science, 68(1), 1–11. https://doi.org/10.1080/00221589.1993.11516322

Pearce, B. D., Grange, R. I., & Hardwick, K. (1993b). The growth of young tomato fruit. II. Environmental influences on glasshouse crops grown in rockwool or nutrient film. Journal of Horticultural Science, 68(1), 13–23. https://doi.org/10.1080/00221589.1993.11516323

Rodriguez-Ortega, W., Martinez, V., Rivero, R. M., Camara-Zapata, J., Mestre, T., & Garcia-Sanchez, F. (2017). Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricultural Water Management, 183, 158–168. https://doi.org/10.1016/j.agwat.2016.07.014

Rodríguez Díaz, E., Salcedo Pérez, Eduardo Rodríguez Macias, Ramón González Eguiarte, D. R., & Mena Munguía, S. (2013). Reúso del tezontle: efecto en sus características físicas y en la producción de tomate (Licopersicom esculentum Mill). Terra Latinoamericana, 31(4), 275–284. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792013000500275&lng=es&nrm=iso&tlng=es

Sam, O., Jérez, E., Dell’amico, J., & Ruiz-Sanchez, M. C. (2000). Water Stress Changes and Tomato Anatomy Leaf Epidermes. In Biologia Plantarum (Vol. 43, Issue 2, pp. 275–277). https://doi.org/doi:10.1023/a:1002716629802

Sato, S., Peet, M. M., & Thomas, J. F. (2002). Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of Experimental Botany, 53(371), 1187–1195. https://doi.org/10.1093/jexbot/53.371.1187

Sibomana, I. C., Aguyoh, J. N., & Opiyo, A. M. (2013). Water stress affects growth and yield of container grown tomato ( Lycopersicon esculentum Mill ) plants. Global Journal of Bio-Science and Biotecnology, 2(4), 461–466.

Van de Wal, B. A. E., Windt, C. W., Leroux, O., & Steppe, K. (2017). Heat girdling does not affect xylem integrity : an in vivo magnetic resonance imaging study in the tomato peduncle. New Phytologist, 215(2), 558–568. https://doi.org/10.1111/nph.14610

Van Der Ploeg, A., & Heuvelink, E. (2005). Influence of sub-optimal temperature on tomato growth and yield: A review. Journal of Horticultural Science and Biotechnology, 80(6), 652–659. https://doi.org/10.1080/14620316.2005.11511994

Van Der Zee Arias, A., Van Der Zee, J., Meyrat, A., Poveda, C., & Picado, L. (2012). Estudio de caracterización del Corredor Seco Centroamericano: Vol. I (FAO). https://reliefweb.int/sites/reliefweb.int/files/resources/tomo_i_corredor_seco.pdf

Vijitha, R., & Mahendran, S. (2010). Effect of moisture stress at different growth stages of tomato plant (Lycopersicon esculentum Mill.) on yield and quality of fruits. Journal of Science of the University of Kelaniya Sri Lanka, 5, 1–11. https://doi.org/http://doi.org/10.4038/josuk.v5i0.4086

Wang, F., Kang, S., Du, T., Li, F., & Qiu, R. (2011). Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 98(8), 1228–1238. https://doi.org/10.1016/j.agwat.2011.03.004

Wang, X., & Xing, Y. (2017). Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality : a principal component analysis. Scientific Reports, 7(350), 1–13. https://doi.org/10.1038/s41598-017-00373-8

Wardhani, W. S., & Kusumastuti, P. (2013). DESCRIBING THE HEIGHT GROWTH OF CORN USING LOGISTIC AND GOMPERTZ MODEL. AGRIVITA, 35(3), 237–241. https://doi.org/http://dx.doi.org/10.17503/Agrivita-2013-35-3-p237-241

Yuan, X. K., Yang, Z. Q., Li, Y. X., Liu, Q., & Han, W. (2015). Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato ª. 54(1), 28–39. https://doi.org/doi:10.1007/s11099-015-0122-5

Zegbe, J. A., Behboudian, M. H., & Clothier, B. E. (2007). Respuesta del tomate para proceso al reigo parcial de la raíz. Terra Latinoamericana, 25(2395–8030), 61–67.

Descargas

Publicado

2024-01-29

Número

Sección

CIENCIAS AMBIENTALES

Artículos más leídos del mismo autor/a