Seismic microzonation of the urban sector of the city of León, Nicaragua
DOI:
https://doi.org/10.5377/farem.v10i40.13048Keywords:
Seismic microzonation, seismic response, surface seismic waves, MASW, UNAN-ManaguaAbstract
The main objectives of this research were to determine the seismic demand as well as to define the seismic microzonation in the urban sector of the city of Leon, this sector has about 173,866 inhabitants, this is the number of direct beneficiaries with the information produced in this research. In this research we used environmental vibration measurement (MHVSR), as well as surface wave measurement with the MASW active method. The empirical transfer functions(ETF) showed that the soils in the area vibrate with three modes, which vary their vibration period between the values To1=0.049 to 0.160 s, To2=0.161 to0.330 s and To3=0.331 to 0.969 s. In addition, based on the results of Vs30 and the RNC-07 the soils in the area can be classified as firm soils or moderately soft soil or as type II and III, respectively. The results of this research will be used to strengthen disaster mitigation against earthquakes in this city by being included in the Nicaraguan national construction regulations.
Downloads
References
Alfaro, A., Navarro, M., Sánchez, J., & Pujades, L. (1999). Microzonificación Sísmica de Barcelona utilizando el método de Nakamura. Congreso Nacional de Ingeniería Sísmica, 273–278. http://www.ciees.org/doc_estudios/1999_alfaro_navarro_sanchez_pujades.pdf
Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S.-J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M., Kishida, T., & Donahue, J. L. (2014). NGA-West2 Database. Earthquake Spectra, 30(3), 989–1005. https://doi.org/10.1193/070913EQS197M
Arslan, H., & Siyahi, B. (2006). A comparative study on linear and nonlinear site response analysis. Environmental Geology, 50(8), 1193–1200. https://doi.org/10.1007/s00254-006-0291-4
Baker, J. W., & Lee, C. (2018). An Improved Algorithm for Selecting Ground Motions to Match a Conditional Spectrum. Journal of Earthquake Engineering, 22(4), 708–723. https://doi.org/10.1080/13632469.2016.1264334
Bonnefoy-Claudet, S., Cornou, C., Bard, P. Y., Cotton, F., Moczo, P., Kristek, J., & Fäh, D. (2006). H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167(2), 827–837. https://doi.org/10.1111/j.1365-246X.2006.03154.x
Castrillo-Osorio, N. (2021). Avances en la microzonificación sísmica de la región del Pacifico de Nicaragua. In SOVG. (Ed.), XVI Congreso Venezolano de Geofísica.
Castrillo E. N. Yokoi T., & Ulriksen P, E. K. (2014). Local site effect characterization in the old downtown area of Managua city, Nicaragua. 5th Asian Conference on Earthq. Eng.
FEMA. (2003). Nehrp Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (Fema 450). In Part 1 (Issue Fema 450).
Hernandez, O., & Lermo, J. (2009). Reevaluación del efecto de sitio y propuesta de clasificación de terreno con fines de diseño sísmico para Managua, Nicaragua. In IGG-CIGEO: Vol. Máster. UNAN-Managua.
Hodgson, G. (2000). Geología Regional de Nicaragua. In Introducción al Léxico Estratigráfico de Nicaragua.
INETER. (2000). Microzonificación sísmica de Managua.
INETER. (2004). Mitigación de Geo-riesgos.
INIDE. (2020). Anuario estadístico.
Kagawa, T. (1996). Estimation of velocity structures beneath Mexico City using microtremor array data. In P. Oxford (Ed.), 11th World Conference on Earthquake Engineering.
Kanai Tanaka, T., K. (1961). On microtremor VIII. Bulletin Earthquake Research Institute.
Lacayo, L. (2016). Evaluación del efecto de sitio en el area urbana de la ciudad de León. In Instituto de Geología y Geofísica de la UNAN-Managua. UNAN-Managua.
Martínez, D. (2011). Effect of surface geology (considering nonlinearity of subsoil) on ground motion in the urban area of managua, nicaragua. In IISEE-BRI: Vol. Máster. GRIPS.
MOVIMONDO. (2004). Amenazas geológicas y vulnerabilidad de la ciudad de León.
MTI. (2007). Reglamento nacional de la construcción, RNC-07. (D. general de N. de construcción y desarrollo urbano. (ed.)).
Nakamura, Y. (1989). Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 30(1), 25–33.
Nogoshi M., Igarashi, T. (1971). On the amplitude characteristics of microtremors (part 2). Journal of Seismological Society of Japan.
Obando, E., Ryden, N., Park, C., Ulriksen, P. (2011). A depth mobile for measuring transfer functions. Soil Dynamics and Earthquake Engineering.
Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800–808. https://doi.org/10.1190/1.1444590
Parrales, R., & Ulriksen, P. (2006). Dynamic properties of the soils in the area of Managua, Nicaragua. In Geology department: Vol. Licentiate. Lund.
Romero, C. (2005). Estudio de efecto de sitio en el area urbana de las ciudades de Masaya y Catarina. In IGG-CIGEO: Vol. Máster. UNAN-Managua.
Schnabel Lysmer, J., & Seed, H. B., P. B., & California, U. of. (1972). A computer Program for Earthquake Response Analysis of Horizontally Layered Sites.
Shah Mortgat, C., Kiremijian, A., & Zsutty, T., H., & university, S. (1975). A study of seismic risk for Nicaragua, Part I.
Tuladhar, R., Yamazaki, F., Warnitchai, P., & Saita, J. (2004). Seismic microzonation of the greater Bangkok area using microtremor observations. Earthquake Engineering and Structural Dynamics, 33(2), 211–225. https://doi.org/10.1002/eqe.345
Wathelet, M., Chatelain, J. L., Cornou, C., Giulio, G. Di, Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A user-friendly open-source tool set for ambient vibration processing. Seismological Research Letters, 91(3), 1878–1889. https://doi.org/10.1785/0220190360
Published
Issue
Section
License
Copyright (c) 2021 Revista Científica de FAREM-Esteli
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.