Genetic itinerary of equivalence relations in school and daily life
DOI:
https://doi.org/10.5377/farem.v12i45.16042Keywords:
Set, equivalence relation, exemplifications, equivalence classesAbstract
The concept of equivalence relation describes the prolonged practice of man with himself and with society, that is to say, it marks a passage from the singular to the plural, a search among objects or concepts that possess some kind of correspondence in order to then classify them as equivalent or non-equivalent. The equivalence relations are a cultural product that has accompanied man in his different historical stages, but that becomes invisible most of the time because of its everyday life, therefore, there are different mathematical concepts, which are isolated by the fact of not evidencing their applicability in daily life. Another essential aspect about equivalence relations is that they are essential mechanisms to understand the functionality or behavior of different things that are conjugated in their similarities or that from their differences show aspects that allow the definition of a certain type of relation. In this sense and under the philosophy of showing an itinerary of the concept of equivalence relation, detailed exemplifications are presented in diverse contexts and educational levels, as well as the corresponding determination of: equivalence classes and quotient set.
Downloads
References
Asghari. (2010). A mod dictator partitions his country.
Asghari. (2019). Equivalence: An Attempt at a History of the Idea. Synthese(196), 4657–4677.
Asghari, A. H. (2009). Experiencing equivalence but organizing order. Educ Stud Math(71), 219–234.
Bible, S. I. (1999). La Santa Biblia Nueva Versión International. Colorado Springs, CO. EE.UU.
Chapra, S., & Raymond, C. (2007). Métodos Numéricos para Ingenieros. McGraw Hill Interamerica.
Cuervo, B. (2017). La sociedad en el Egipto de los faraones. Historia Digital.
Curveira, D., & Bravo, G. (2013). Tratamiento de Conceptos Matemáticos y su repercusión en el proceso de formación profesional. Universidad y Sociedad, 10.
Gónzalez, F. (2004). Apuntes de Matemática Discreta y Relaciones de Equivalencia. Madrid, España: Universidad de Cadíz.
ICCA. (2002). Cría de Abejas Reinas. SAGARPA.
Joyce, D. (1996, Enero 12). Elementod de Euclide. Libro 1. Nociones Comunes. Retrieved from http://ficus.pntic.mec.es/~jgog0066/pitag_web/noccom.html
Kennet, R. (2004). Matmemática Discretas y sus aplicaciones. Madrid, España: McGraw-Hill/Interamericana de España S. A. U.
Koulikov. (1982). Algébre et théorie des nombres. Francia: Mir.
NICAMATE. (2019). Matemática 7. Managua, Nicaragua: JICA - Ministerio de Educación (MINED).
RAE. (2001, Marzo 5). Diccionario de la Lengua Española (2001). Retrieved from https://www.rae.es/drae2001/problema
Revilla. (2010). Cursos Matematicos - Relaciones de Equivalencia.
Rojo, A. (1996). Algebra I. Buenos Aires: El Ateneo.
UTPL. (2021, Enero 11). La educación actual requiere innovación y lidereazgo. (U. T. Ecuador, Ed.) Retrieved from https://noticias.utpl.edu.ec/la-educacion-actual-requiere-innovacion-y-liderazgo
Published
Issue
Section
License
Copyright (c) 2023 Revista Científica de FAREM-Esteli
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.