Nash equilibrium stability of a Cournot game with differentiated goods and concave demand function
DOI:
https://doi.org/10.5377/farem.v12i45.16044Abstract
In a non-cooperative game, the benefit of the agents involved in the game depends on their payment function and the strategy employed by each agent. In the particular case of a non-cooperative Cournot game, the strategic choice of each agent is the quantity of good to be produced and its payment function coincides with the benefit function. This paper set out to investigate the Nash equilibrium and its stability in a noncooperative Cournot game with differentiated goods and concave demand function. The method used was that of mathematical economics and, in addition, a methodology based on literature review, study of various mathematical procedures and numerical simulation in the statistical software R. As a result, we have a new bipersonal non-cooperative Cournot game where the demand function is concave and it is shown that this game has a unique Nash equilibrium which, in addition, is symmetric. It is concluded that, under the naive expectation strategic updating rule, the symmetric Nash equilibrium is asymptotically stable and the permanence in the market of the firms is only possible if both follow the imitation strategy, each firm produces the same amount of good as its opponent in each time period.
Downloads
References
Askar, S. S. (2014). The impact of cost uncertainty on Cournot oligopoly game with concave demand function [El impacto de la incertidumbre en el costo en un juego de oligopolio de Cournot con función de demanda cóncava]. Applied Mathematics and Computation 232,144–149.
Beath, J., y Katsoulacos, Y. (1991). The economic theory of product differentiation [Teoría económica de la diferenciación de productos]. Cambridge University Press.
Bertrand, J. (1883). Review of Théorie Mathématique de la Richesse Sociale and
Recherches sur les Principles Mathématique de la Théorie des Richesses [Revisión de la Teoría Matemática de la Riqueza Social e Investigación sobre los principios matemáticos de la teoría de la riqueza]. Journal des Savants 68, 499–508.
Bowley, A. L. (1924). Mathematical Groundwork of Economics: An Introductory Treatise [Fundamentos matemáticos de la economía: Un trato introductorio]. Oxford University Press, Oxford.
Chiang, A. C., y Wainwright, K. (2006). Métodos fundamentales de economía matemática (F. Sánchez y R. Arrioja, Trad.). McGraw-Hill. (Obra original publicada en 2004)
Cournot, A. A. (1838). Recherches sur les Principles Mathématique de la Théorie des Richesses [Investigación sobre los principios matemáticos de la teoría de la riqueza]. chez L. Hachette.
Dixit, A. (1979). A model of duopoly suggesting a theory of entry barriers [Un modelo de duopolio que sugiere una teoría de las barreras de entrada]. The Bell Journal of Economics, 10, 20-32.
Naimzada, A. y Tramontana, F. (2012). Dynamic properties of a Cournot–Bertrand duopoly game with differentiated products [Propiedades dinámicas de un juego de duopolio de Cournot-Bertrand cn productos diferenciados]. Economic Modelling, 29(4), 1436-1439.
Puu, T., y Sushko, I. (2002). Oligopoly dynamics: Models and tools [Dinámica del oligopolio: Modelos y herramientas]. Springer-Verlag.
Singh, N., y Vives, X. (1984). Price and quantity competition in a differentiated duopoly [Competencia en precios y cantidades en un duopolio diferenciado]. The Rand journal of economics, 546-554.
Szidarovszky, F. (1999). Adaptive expectations in discrete dynamic oligopolies with production adjustment costs [Expectativas adaptativas en oligopolios dinámicos discretos con ajuste de costos de producción]. Pure Mathematics and Applications 10(2), 133–139.
Published
Issue
Section
License
Copyright (c) 2023 Revista Científica de FAREM-Esteli
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.