Desarrollo e investigación de modelos de puntuación de colecciones basados en la plataforma analítica Deductor
Palabras clave:
deuda crediticia vencida, puntaje de cobranza, árbol de decisión, regresión logística, red neuronal y minería de datosResumen
Este artículo resuelve el problema de la construcción e investigación de modelos de puntuación de colecciones. Se destaca la relevancia de resolver este problema sobre la base de las tecnologías de modelado inteligente: árboles de decisión, regresión logística y redes neuronales. Los datos iniciales de los modelos fueron un conjunto de 14 columnas y 5779 filas. La construcción de los modelos se realizó en plataforma Deductor. Cada modelo fue probado en el conjunto de 462 registros. Para todos los modelos se construyó la correspondiente matriz de clasificación y se calcularon los errores de 1º y 2º tipo, así como el error general de los modelos. En términos de minimizar estos errores, la regresión logística mostró los peores resultados y la red neuronal mostró los mejores. Además, se evaluó la efectividad de los modelos construidos según criterios de «ingresos» y «tiempo». Por el tiempo que cuesta el modelo de regresión logística supera a otros modelos. Sin embargo, en términos de ingresos, el modelo de red neuronal fue el mejor. Así, los resultados mostraron que para minimizar el tiempo dedicado al trabajo con los deudores es recomendable utilizar un modelo logístico. Sin embargo, para maximizar las ganancias y minimizar los errores de clasificación, es apropiado utilizar un modelo de red neuronal. Esto indica su eficacia y posibilidad de uso práctico en sistemas de puntuación inteligentes.
Descargas
Descargas
Publicado
Número
Sección
Licencia
Los autores que publican en Nexo Revista Científica están de acuerdo con los siguientes términos::- Los autores conservan los derechos de autor y conceden a la revista el derecho de la primera publicación, con el trabajo [SPECIFY PERIOD OF TIME] a la vez que tras la publicación esté licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría de la obra y la publicación inicial en esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).