Análisis matemático de la Función de Producción como medio para relacionar la productividad media y marginal del capital y del trabajo como factores productivos determinantes en la función de producción
Resumen
Mediante la implementación de derivadas parciales por cada variable (factor), se determina que las derivadas segundas parciales respectivas, son negativas, y por lo tanto denotan concavidad hacia abajo, lo cual quiere decir que estamos en presencia de un punto máximo, y por consiguiente son funciones de producción que pueden presentar comportamiento de economías de escala.
La determinación de las productividades marginales del trabajo y del capital, resultan importantes porque establecen el nivel de aprovechamiento óptimo de los factores de producción, y su remuneración adecuada.
Lo que garantiza que la empresa tenga criterios de decisión, para hacer los respectivos ajustes que le permitan mantener su presencia en el mercado por más tiempo.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista están de acuerdo con los siguientes términos.
- El autor o los autores de los artículos, ensayos o investigaciones conceden a la Universidad Nacional Autónoma de Nicaragua, Managua (UNAN-Managua) los derechos de edición (copyright) del trabajo enviado, por consiguiente la Universidad cuenta con el derecho exclusivo para publicar el artículo durante el periodo completo de los derechos de autor.
- Estos derechos de autor/ autores autorizan a la Revista Torreón Universitario y a la Universidad editar y divulgar/publicar el artículo en dicha Revista, incluyendo reproducción impresa y electrónica, el almacenamiento, recuperación y cualquier otro tipo de publicación, y fuentes de información secundaria como servicios de resúmenes y bases de datos, así mismo la facultan a proteger el artículo contra el uso no autorizado para su difusión por medios impresos o electrónicos (PDF, HTML, EPUB, XML u otros).
Licencia para el uso del contenido
La revista hace uso de la Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Bajo esta declaración:
Este revista está sujeta a una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. Puede ser copiada, distribuida y transmitida públicamente siempre y cuando se cite al autor y la fuente (Revista Torreón Universitario), no debe modificarse ni utilizarse con ningún fin comercial. La licencia completa se puede consultar en http://creativecommons.org/licenses/by-nc-nd/4.0/.