Application of stable isotopes and hydrochemistry for the understanding of the hydrological system in Laguna de Tiscapa. Managua, Nicaragua
DOI:
https://doi.org/10.5377/farem.v0i37.11211Keywords:
Faults, hydrochemistry, isotopic enrichment, isotopic impoverishment, dissolutionAbstract
Stable isotopes (Deuterium and Oxygen 18) and hydrochemistry were used as tracers to determine the origin of the water in the crater of Laguna de Tiscapa and its interactions with groundwater and Lake Xolotlán. For this purpose, 253 stable isotope results and 56 hydrochemical results from the sources: precipitation, groundwater, Laguna de Tiscapa, and Lake Xolotlán were used. The stable isotopes indicate that Laguna de Tiscapa is recharged in a western zone by groundwater where there is an average composition of -7‰ inδ18O, the evaporation processes in the lagoon make it have an average composition of -5.4‰ in δ18O, reflecting this contribution from Laguna de Tiscapa northeast zone of groundwater with enrichment of -6‰ in δ18O. The hydrochemical composition in Laguna de Tiscapa has common relation with groundwater where the dissolution processes of geological material and not the meteoric one rule, this dissolution makes HCO-3, Ca+2, Na+, Mg+2 ions predominate. The dissolution processes are mainly due to the presence of silicates followed by calcites, which is characteristic of the composition of the Las Sierras aquifer. The contribution of water from Lake Xolotán to Laguna de Tiscapa can be excluded, since it has a highly enriched isotopic composition, in addition to the salinization processes experienced by this body of water.
Downloads
References
Araguás Araguás, L., Louvat, D., López Guzmán, A., & Castillo Hernández, E. (1992). Estudio de Hidrología Isotópica de los Acuíferos de Managua. Informe Final, Proyecto NIC/8/004, IAEA, Viena.
Bahir, M., Ouhamdouch, S., Ouazar, D., & Chehbouni, A. (2020). Assessment of groundwater quality from semi-arid area for drinking purpose using statistical, water quality index (WQI) and GIS technique. Carbonates and Evaporites, 35, 27. doi:10.1007/s13146-020-00564-x
Barberena Moncada, J., & Hurtado García, I. (2019). Proceso de acidificación de las precipitaciones de Managua. Revista Científica de FAREM-Estelí(31), 72-80. doi:10.5377/farem.v0i31.8472
Brown, R. D., Ward, P. L., & Plafker, G. (1973). Geologic and seismologic aspects of the Managua, Nicaragua, earthquakes of December 23, 1972. U. S. Geological Survey Professional Paper. 838. doi:10.3133/pp838
Burkert, U., Ginzel, G., Babenzien, H. D., & Koschel, R. (2004). The Hydrogeology of a Catchment Area and an Artificially Divided Dystrophic Lake? Consequences for the Limnology of Lake Fuchskuhle. Biogeochemistry, 71(2), 225-246. doi:10.1007/s10533-005-8132-1
Cowan, H., Prentice, C., Pantosti, D., de Martini, P., Strauch, W., & Participants, W. (2002). Late Holocene Earthquakes on the Aeropuerto Fault, Managua, Nicaragua. Bulletin of the Seismological Society of America, 92(5), 1694-1707. doi:DOI: 10.1785/0120010100
Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133(3465), 1702-1703. doi:10.1126/science.133.3465.1702
Finizola, A., Sortino, F., Lénat, J.--., & Valenza, M. (2002). Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. Journal of Volcanology and Geothermal Research, 116(1-2), 1-18. doi:10.1016/S0377-0273(01)00327-4
Freeze, R. A., & Cherry, J. A. (1979). Groundwater. New Jersey, USA: Prentice-Hall, Inc.
Freundt, A., Hartmann, A., Kutterolf, S., & Strauch, W. (2009). Volcaniclastic stratigraphy of the Tiscapa maar crater walls (Managua, Nicaragua): implications for volcanic and seismic hazards and Holocene climate changes. International Journal of Earth Sciences, 99, 1453-1470. doi:10.1007/s00531-009-0469-6.
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088-1090. doi:10.1126/science.170.3962.1088.
Gonfiantini, R. (1978). Standards for stable isotope measurements in natural compounds. Nature, 271, 534-536. doi:10.1038/271534a0
IANAS. (2015). Desafios del Agua Urbana en las Américas. Retrieved from https://www.ianas.org/docs/books/Desafios_Agua.html
JICA. (1993). Estudio sobre el proyecto de abastecimiento de agua en Managua. Informe Principal, Instituto Nicaragüense de Acueductos y Alcantarillado, Tokio.
Kumar, M., Ramanathan, A., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol, 50, 1025-1039. doi:10.1007/s00254-006-0275-4
Lakshmanan, E., Kannan, R., & Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuran district, Tamil Nadu, India. Enviromental Geosciences, 10(4), 157-166. doi:10.1306/eg.0820303011
Lyu, M., Pang, Z., Yin, L., Zhang, J., Huang, T., Yang, S., . . . Gulbostan, T. (2019). The Control of Groundwater Flow Systems and Geochemical Processes on Groundwater Chemistry: A Case Study in Wushenzhao Basin, NW China. Water, 11(1), 790. doi:10.3390/w11040790
Mariño, E., & García, R. (2018). Apuntes sobre Aplicaciones Ambientales de la Hidrogeoqímica. Universidad Nacional de Salta, 67.
Mauri, G., Williams-Jones, G., Saracco, G., & Zurek, J. (2012). A geochemical and geophysical investigation of the hydrothermal complex of Masaya Volcano, Nicaragua. Journal of Volcanology and Geothermal Research, 227-228, 15-31. doi:https://doi.org/10.1016/j.jvolgeores.2012.02.003
Mejía Lacayo, J. (2018, Mayo). Tiscapa, rescate de un desastre ecológico. Temas Nicaragüenses(121), p. 101. Retrieved from www.temasnicas.net
Panda, U. C., Sundaray, S. K., Rath, P., Nayak, B. B., & Bhatta, D. (2006). Application of factor and cluster analysis for characterization of river and estuarine water systems-A case study: Mahanadi River (India). Journal of Hydrology, 331(3-4), 434-445. doi:10.1016/j.jhydrol.2006.05.029
Parello, F., Aiuppa, A., Calderon, H., Calvi, F., Cellura, D., Martinez, V., . . . Vinti, D. (2008). Geochemical characterization of surface waters and groundwater resources in the Managua area (Nicaragua, Central America). Applied Geochemistry, 23, 914-931. doi:10.1016/j.apgeochem.2007.08.006
Pazand, K., Khosravi, D., Ghaderi, M. R., & Rezvanianzadeh, M. R. (2018). Identification of the hydrogeochemical processes and assessmet of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in Central Iran. Groundwater for Sustaninable Development, 6, 245-254. doi:10.1007/s11356-016-6371-4
Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos Tams. AGU, 25(6), 914-928. doi:10.1029/TR025i006p00914.
Romanelli, A., Quiroz Londoño, O. M., Martínez, D. E., Massone, H. E., & Escalante, A. H. (2014). Hydrogeochemistry and isotope techniques to determine water interactions in groundwater-dependent shallow lakes, Wet Pampa Plain, Argentina. Environmental Earth Sciences, 71, 1953-1966. doi:10.1007/s12665-013-2601-y
Rozanski, K., Castillo, E., Flores, Y., Urbina, A., Castro, M., & Dávila, R. (2001). Balance Isotópico e Hidrogeológico del Lago Xolotlán. Informe Final, INETER-OIEA, Dirección de Hidrogeología, Managua.
Rozanski, K., Froehlich, K., & Mook, W. G. (2002). Isótopos Ambientales en el Ciclo Hidrológico. Principios y Aplicaciones. In W. G. Mook (Ed.), Sección III Agua Superficial. Madrid, España: Instituto Geológico y Minero de España.
Sánchez-Gutiérrez, R., Mena-Rivera, L., Sánchez-Murillo, R., Fonseca-Sánchez, A., & Madrigal-Solís, H. (2020). Hydrogeochemical baseline in a human-altered landscape of the central Pacific coast of Costa Rica. Environ Geochem Health. doi:10.1007/s10653-019-00501-5
Sánchez-Murillo, R., Esquivel-Hernández, G., Corrales-Salazar, J. L., Castro-Chacón, L., Durán-Quesada, A. M., Guerrero-Hernández, M., . . . Terzer-Wassmuth, S. (2020). Tracer hydrology of the data-scare and heterogeneous Central American Isthmus. Hydrological Processes, 1-16. doi:10.1002/hyp.13758
Turner, J. V., & Townley, L. R. (2006). Determination of groundwater flow-through regimes of shallow lakes and wetlands from numerical analysis of stable isotope and chloride tracer distribution patterns. Journal of Hydrology, 320(3-4), 451-483. doi:10.1016/j.jhydrol.2005.07.050
Wagh, V. M., Panaskar, D. B., Jacobs, J. A., Mukate, S. V., Muley, A. A., & Kadam, A. K. (2019). Influence of hydro-geochemical processes on groundwater quality through geostatistical techniques in Kadava River basin, Western India. Arabian Journal Geosciences, 12, 7. doi:10.1007/s12517-018-4136-8
Wagh, V. M., Panaskar, D. B., Varade, A. M., Mukate, S. V., Gaikwad, S. K., Pawar, R. S., . . . Aamalawar, M. L. (2016). Major ion chemistry and quality assessment of the groundwater resources of Nanded tehsil, a part of southeast Deccan Volcanic Province, Maharashtra, India. Enviromental Earth Sciences, 75, 1418. doi:10.1007/s12665-016-6212-2
Ward, P. L., Gibbs, J., Harlow, D., & Aburto, A. (1974). Aftershocks of the Managua, Nicaragua, earthquake and the tectonic significance of the Tiscapa fault. Bulletin of the Seismological Society of America, 64(4), 1017-1029.
Yidana, S. M., & Yidana, A. (2010). An Assessment of the origin and variation of groundwater salinity in southeastern Ghana. Enviroment Earth Sci, 61, 1259-1273. doi:10.1007/s12665-010-0449-y
Zhang, Y., Xu, M., Li, X., Zhang, Q., Guo, J., Yu, L., & Zhao, R. (2018). Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding Country, Southwestern China. Water, 10(1), 80. doi:10.3390/w10010080.
Published
Issue
Section
License
Copyright (c) 2021 Revista Científica de FAREM-Esteli
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.