Benefits of transgenic biofortified foods, a review from 2012 to 2022

Authors

DOI:

https://doi.org/10.5377/elhigo.v12i2.15229

Keywords:

Biotechnology, crops, genes

Abstract

Biofortified transgenic foods contribute as a future, promising, innovative, profitable and sustainable tool to supply the need for micronutrients to a population without diverse diets by providing micronutrient alternatives. Major food crops are characterized by poor sources of micronutrients essential for human growth. The objective is to inform about the main biofortified transgenic foods with the potential to reduce hidden hunger. Search equations in English and bibliometric analysis of the terms transgenic foods and biofortification were used, finding a total of one thousand records, mainly the categories of cereals, vegetables, fruits and tubers. The reference source corresponds to the databases of the BAC (Agricultural Library of Colombia). The manuscript deals with aspects of the contribution of transgenic crops in biofortification. Success stories stand out, such as those of corn enriched in quality proteins in lysine and tryptophan, orange sweet potato rich in vitamin A. It expands on the different transgenic foods, especially vegetables, fruits, tubers and cereals, which supply the nutritional needs of the population. Transgenic foods have to face obstacles due to the limitations of acceptance among consumers and even governments, with different procedures and regulations for regulatory approval that are costly and slow. But their future potential stands out due to their ability to eliminate micronutrient malnutrition among billions of poor people, especially in developing countries with hidden hunger trends.

Downloads

Download data is not yet available.

Author Biographies

Wilmar Alexander Wilches Ortiz, Centro de Investigación Tibaitatá, Mosquera, Cundinamarca, Colombia

Ingeniero agrónomo de la Universidad de Cundinamarca, con maestrías en cambio climático de la Universidad Internacional Iberoamericana de Puerto Rico, en Seguridad Alimentaria de la Universidad Abierta y a Distancia de México - UnADM y en Biotecnología Alimentaria de la Universidad Nacional Abierta y a Distancia - UNAD. Actualmente se desempeña en áreas de investigación relacionadas a fuentes microbiológicas de resistencia a enfermedades en cultivo de uchuva, inmovilización de Cd en cacao y de As y Cd en arroz, biofertilización en cultivos de caña, tomate, papa, uchuva, mora y caucho. Actualmente se desempeña como profesional de apoyo a la investigación en la Corporación Colombiana de Investigación Agropecuaria (Agrosavia). 

Ginna Natalia Cruz Castiblanco, Centro de Investigación Tibaitatá, Mosquera, Cundinamarca, Colombia

Ingeniera agrónoma de la Universidad de Cundinamarca, Especialista y Máster en estadística aplicada, de la Universidad Santo Tomás. Sus investigaciones se han centrado en las áreas de fitopatología, entomología y estadística, con énfasis en el desarrollo de metodologías para evaluar el comportamiento de plagas, enfermedades y los factores bióticos y abióticos que favorecen su prevalencia. Durante su trayectoria, ha diseñado y validado métodos de control en campo en sistemas productivos de aguacate, cacao, mango, papa y pasifloras (gulupa y granadilla). Además, ha adquirido amplia experiencia en la implementación y ejecución de programas para el monitoreo de plagas y enfermedades, la captura e identificación de enemigos naturales y el análisis estadístico de encuestas, modelos bayesianos y experimentos. Actualmente se desempeña como profesional de apoyo a la investigación en la Corporación Colombiana de Investigación Agropecuaria (Agrosavia). 

Yuly Paola Sandoval Cáceres, Centro de Investigación Tibaitatá, Mosquera, Cundinamarca, Colombia

Ingeniera agrónoma de la Universidad de Cundinamarca, Máster en Ciencias Agrarias, línea de investigación en Entomología, de la Universidad Nacional de Colombia sede Bogotá. Sus investigaciones se han centrado en las áreas de la entomología con énfasis en la identificación de insectos nocivos, ecología química y cría de insectos. Actualmente se desempeña como profesional de apoyo a la investigación en la Corporación Colombiana de Investigación Agropecuaria (Agrosavia). 

References

Adeyeye, S. A. O., & Idowu-Adebayo, F. (2019). Genetically modified and biofortified crops and food security in developing countries: A review. Nutrition & Food Science, 49(5), 978–986. https://doi.org/10.1108/NFS-12-2018-0335

Ardisana, E., Gaánza, B., Torres, A., & Fosado, O. (2018). Agricultura en Sudamerica: La Huella Ecologica y el futuro de la produccion agrícola. Revista Chakiápman de Ciencias Sociales y Humanidades, 90–101. http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S2550-67222018000100090&nrm=iso

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/https://doi.org/10.1016/j.joi.2017.08.007

Avalos, M., Garbeva, P., Vader, L., van Wezel, G. P., Dickschat, J. S., & Ulanova, D. (2022). Biosynthesis, evolution and ecology of microbial terpenoids. Natural Product Reports, 39(2), 249–272. https://doi.org/10.1039/d1np00047k

Blancquaert, D., Van Daele, J., Strobbe, S., Kiekens, F., Storozhenko, S., De Steur, H., Gellynck, X., Lambert, W., Stove, C., & Van Der Straeten, D. (2015). Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology, 33(10), 1076–1078. https://doi.org/10.1038/nbt.3358

Blesh, J., Hoey, L., Jones, A. D., Friedmann, H., & Perfecto, I. (2019). Development pathways toward “zero hunger.” World Development, 118, 1–14. https://doi.org/https://doi.org/10.1016/j.worlddev.2019.02.004

Bojórquez, R. M. C., Gallego, J. G., & Collado, P. S. (2013). Propiedades funcionales y beneficios para la salud del licopeno. Nutricion Hospitalaria, 28(1), 6–15. https://doi.org/10.3305/nh.2013.28.1.6302

Broad, R. C., Bonneau, J. P., Hellens, R. P., & Johnson, A. A. T. (2020). Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 21(5). https://doi.org/10.3390/ijms21051790

Calero, P., & Nikel, P. I. (2019). Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microbial Biotechnology, 12(1), 98–124. https://doi.org/10.1111/1751-7915.13292

Cominelli, E., Rodiño, A. P., De Ron, A. M., & Sparvoli, F. (2019). Genetic Approaches to Improve Common Bean Nutritional Quality: Current Knowledge and Future Perspectives. In A. M. I. Qureshi, Z. A. Dar, & S. H. Wani (Eds.), Quality Breeding in Field Crops (pp. 109–138). Springer International Publishing. https://doi.org/10.1007/978-3-030-04609-5_5

Das, P., Adak, S., & Lahiri Majumder, A. (2020). Genetic Manipulation for Improved Nutritional Quality in Rice. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.00776

Debelo, H., Albertsen, M., Simon, M., Che, P., & Ferruzzi, M. (2020). Identification and Characterization of Carotenoids, Vitamin E and Minerals of Biofortified Sorghum. In Current Developments in Nutrition (Vol. 4, Issue Suppl 2, p. 1792). https://doi.org/10.1093/cdn/nzaa067_019

Elkonin, L. A., Italianskaya, J. V, Domanina, I. V, Selivanov, N. Y., Rakitin, A. L., & Ravin, N. V. (2016). Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation. Russian Journal of Plant Physiology, 63(5), 678–689. https://doi.org/10.1134/S1021443716050046

Endo, A., Saika, H., Takemura, M., Misawa, N., & Toki, S. (2019). A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing. Rice, 12(1), 81. https://doi.org/10.1186/s12284-019-0345-3

Erpen, L., Devi, H. S., Grosser, J. W., & Dutt, M. (2018). Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell, Tissue and Organ Culture (PCTOC), 132(1), 1–25. https://doi.org/10.1007/s11240-017-1320-6

Force, U. S. P. S. T. (2017). Folic Acid Supplementation for the Prevention of Neural Tube Defects: US Preventive Services Task Force Recommendation Statement. JAMA, 317(2), 183–189. https://doi.org/10.1001/jama.2016.19438

Foreman, K. J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M., Pletcher, M. A., Smith, A. E., Tang, K., Yuan, C.-W., Brown, J. C., Friedman, J., He, J., Heuton, K. R., Holmberg, M., Patel, D. J., Reidy, P., Carter, A., Cercy, K., … Murray, C. J. L. (2018). Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. The Lancet, 392(10159), 2052–2090. https://doi.org/https://doi.org/10.1016

/S0140-6736(18)31694-5

Gao, H., Wu, X., Zorrilla, C., Vega, S. E., & Palta, J. P. (2020). Fractionating of Calcium in Tuber and Leaf Tissues Explains the Calcium Deficiency Symptoms in Potato Plant Overexpressing CAX1. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01793

Garcia Molina, M. D., Botticella, E., Beleggia, R., Palombieri, S., De Vita, P., Masci, S., Lafiandra, D., & Sestili, F. (2021). Enrichment of provitamin A content in durum wheat grain by suppressing β-carotene hydroxylase 1 genes with a TILLING approach. Theoretical and Applied Genetics, 134(12), 4013–4024. https://doi.org/10.1007/s00122-021-03944-6

Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V., & Arora, P. (2018). Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Frontiers in Nutrition, 5(February). https://doi.org/10.3389/fnut.2018.00012

Geetha, S., Joshi, J. B., Kumar, K. K., Arul, L., Kokiladevi, E., Balasubramanian, P., & Sudhakar, D. (2019). Genetic transformation of tropical maize (Zea mays L.) inbred line with a phytase gene from Aspergillus niger. 3 Biotech, 9(6), 208. https://doi.org/10.1007/s13205-019-1731-7

Gillespie, S., Hodge, J., Yosef, S., & Pandya-Lorch, R. (2016). Nourishing millions: Stories of change in nutrition (S. Gillespie, J. Hodge, S. Yosef, & R. Pandya-Lorch (eds.)). International Food Policy Research Institute (IFPRI). https://econpapers.repec.org/RePEc:fpr:ifprib:9780896295889

Gillespie, S., van den Bold Gillespie, M. S., & van den Bold, M. (2017). Agriculture, Food Systems, and Nutrition: Meeting the Challenge. https://doi.org/10.1002/gch2.201600002

Halka, M., Smoleń, S., Czernicka, M., Klimek-Chodacka, M., Pitala, J., & Tutaj, K. (2019). Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. Plant Physiology and Biochemistry, 144, 35–48. https://doi.org/https://doi.org/10.1016/j.plaphy.2019.09.028

Hefferon, K. L. (2015). Nutritionally enhanced food crops; progress and perspectives. International Journal of Molecular Sciences, 16(2), 3895–3914. https://doi.org/10.3390/ijms16023895

Hefferon, K. L. (2016). Can Biofortified Crops Help Attain Food Security? Current Molecular Biology Reports, 2(4), 180–185. https://doi.org/10.1007/S40610-016-0048-0

Holme, I. B., Wendt, T., Gil-Humanes, J., Deleuran, L. C., Starker, C. G., Voytas, D. F., & Brinch-Pedersen, H. (2017). Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Molecular Biology, 95(1), 111–121. https://doi.org/10.1007/s11103-017-0640-6

Hossain, F., Muthusamy, V., Zunjare, R. U., & Gupta, H. S. (2019). Biofortification of Maize for Protein Quality and Provitamin-A Content. In P. K. Jaiwal, A. K. Chhillar, D. Chaudhary, & R. Jaiwal (Eds.), Nutritional Quality Improvement in Plants (pp. 115–136). Springer International Publishing. https://doi.org/10.1007/978-3-319-95354-0_5

Huang, J.-C., Zhong, Y.-J., Liu, J., Sandmann, G., & Chen, F. (2013). Metabolic engineering of tomato for high-yield production of astaxanthin. Metabolic Engineering, 17, 59–67. https://doi.org/https://doi.org/10.1016/j.ymben.2013.02.005

Hudson, J. P. H. A.-J. P. H. A.-M. C.-C. A.-K. A. (2019). Combination of Novel Mutation in FAD3C and FAD3A for Low Linolenic Acid Soybean. Agrosystems, Geosciences & Environment, v. 2(1), 2019 v.2 no.1. https://doi.org/10.2134/age2019.01.0006

James, C. (2013). Global Status of Commercialized Biotech/GM Crops: 2013: ISAAA Brief No. 46. International Service for the Acquisition of Agri-biotech Applications (ISAAA). https://www.isaaa.org/Resources/publications/briefs/46/default.asp

Jaramillo, A. M., Sierra, S., Chavarriaga-Aguirre, P., Castillo, D. K., Gkanogiannis, A., López-Lavalle, L. A. B., Arciniegas, J. P., Sun, T., Li, L., Welsch, R., Boy, E., & Álvarez, D. (2022). Characterization of cassava ORANGE proteins and their capability to increase provitamin A carotenoids accumulation. PLOS ONE, 17(1), 1–24. https://doi.org/10.1371/journal.pone.0262412

Joshi-Saha, A., Sethy, S. K., Misra, G., Dixit, G. P., Srivastava, A. K., & Sarker, A. (2022). Biofortified legumes: Present scenario, possibilities and challenges. Field Crops Research, 279, 108467. https://doi.org/https://doi.org/10.1016/j.fcr.2022.108467

Kanwal, M., Razzaq, A., & Maqbool, A. (2019). Characterization of Phytase Transgenic Wheat under Salt Stress. Biology Bulletin, 46(4), 371–380. https://doi.org/10.1134/S106235901904006X

Khush, G. S., Lee, S., Cho, J.-I., & Jeon, J.-S. (2012). Biofortification of crops for reducing malnutrition. Plant Biotechnology Reports, 6(3), 195–202. https://doi.org/10.1007/s11816-012-0216-5

Kim, H. S., Wang, W., Kang, L., Kim, S.-E., Lee, C.-J., Park, S.-C., Park, W. S., Ahn, M.-J., & Kwak, S.-S. (2020). Metabolic engineering of low-molecular-weight antioxidants in sweetpotato. Plant Biotechnology Reports, 14(2), 193–205. https://doi.org/10.1007/s11816-020-00621-w

Konda, A. R., Nazarenus, T. J., Nguyen, H., Yang, J., Gelli, M., Swenson, S., Shipp, J. M., Schmidt, M. A., Cahoon, R. E., Ciftci, O. N., Zhang, C., Clemente, T. E., & Cahoon, E. B. (2020). Metabolic engineering of soybean seeds for enhanced vitamin E tocochromanol content and effects on oil antioxidant properties in polyunsaturated fatty acid-rich germplasm. Metabolic Engineering, 57, 63–73. https://doi.org/https://doi.org/10.1016/j.ymben.2019.10.005

Li, C., & Song, R. (2020). The regulation of zein biosynthesis in maize endosperm. Theoretical and Applied Genetics, 133(5), 1443–1453. https://doi.org/10.1007/s00122-019-03520-z

Li, X., Ye, J., Munir, S., Yang, T., Chen, W., Liu, G., Zheng, W., & Zhang, Y. (2019). Biosynthetic Gene Pyramiding Leads to Ascorbate Accumulation with Enhanced Oxidative Stress Tolerance in Tomato. International Journal of Molecular Sciences, 20(7). https://doi.org/10.3390/ijms20071558

Liu, H., Wang, F., Liu, X., Xie, Y., Xia, H., Wang, S., & Sun, G. (2022). Effects of marine-derived and plant-derived omega-3 polyunsaturated fatty acids on erythrocyte fatty acid composition in type 2 diabetic patients. Lipids in Health and Disease, 21(1), 20. https://doi.org/10.1186/s12944-022-01630-0

Lombardo, L., & Grando, M. S. (2020). Genetically Modified Plants for Nutritionally Improved Food: A Promise Kept? Food Reviews International, 36(1), 58–76. https://doi.org/10.1080/87559129.2019.1613664

Mathur, V., Javid, L., Kulshrestha, S., Mandal, A., & Reddy, A. A. (2017). World Cultivation of Genetically Modified Crops: Opportunities and Risks. In E. Lichtfouse (Ed.), Sustainable Agriculture Reviews (pp. 45–87). Springer International Publishing. https://doi.org/10.1007/978-3-319-58679-3_2

McGuire, S. (2015). FAO, IFAD, and WFP. The State of Food Insecurity in the World 2015: Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome: FAO, 2015. Advances in Nutrition, 6(5), 623–624. https://doi.org/10.3945/an.115.009936

Mihálik, D., Gubišová, M., Klempová, T., Čertík, M., Ondreičková, K., Hudcovicová, M., Klčová, L., Gubiš, J., Dokupilová, I., Ohnoutková, L., & Kraic, J. (2014). Transgenic barley producing essential polyunsaturated fatty acids. Biologia Plantarum, 58(2), 348–354. https://doi.org/10.1007/s10535-014-0406-9

Mir, Z. A., Yadav, P., Ali, S., Sanand, S., Mushtaq, M., Bhat, J. A., Tyagi, A., Upadhyay, D., Singh, A., & Grover, A. (2020). Transgenic Biofortified Crops: Applicability and Challenges. In T. R. Sharma, R. Deshmukh, & H. Sonah (Eds.), Advances in Agri-Food Biotechnology (pp. 153–172). Springer Singapore. https://doi.org/10.1007/978-981-15-2874-3_7

Mrízová, K., Holasková, E., Öz, M. T., Jiskrová, E., Frébort, I., & Galuszka, P. (2014). Transgenic barley: A prospective tool for biotechnology and agriculture. Biotechnology Advances, 32(1), 137–157. https://doi.org/https://doi.org/10.1016/j.biotechadv.2013.09.011

National Academies of Sciences Engineering and Medicine, N. (2016). Genetically Engineered Crops: Experiences and Prospects. https://doi.org/10.17226/23395

Oliva, N., Chadha-Mohanty, P., Poletti, S., Abrigo, E., Atienza, G., Torrizo, L., Garcia, R., Dueñas, C., Poncio, M. A., Balindong, J., Manzanilla, M., Montecillo, F., Zaidem, M., Barry, G., Hervé, P., Shou, H., & Slamet-Loedin, I. H. (2014). Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Molecular Breeding, 33(1), 23–37. https://doi.org/10.1007/s11032-013-9931-z

Park, S., Kim, Y.-H., Kim, S. H., Jeong, Y. J., Kim, C. Y., Lee, J. S., Bae, J.-Y., Ahn, M.-J., Jeong, J. C., Lee, H.-S., & Kwak, S.-S. (2015). Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity. Physiologia Plantarum, 153(4), 525–537. https://doi.org/10.1111/ppl.12281

Parra-Galindo, M. A., Soto-Sedano, J. C., Mosquera-Vásquez, T., & Roda, F. (2021). Pathway-based analysis of anthocyanin diversity in diploid potato. PLOS ONE, 16(4), 1–22. https://doi.org/10.1371/journal.pone.0250861

Pérez-Massot, E., Banakar, R., Gómez-Galera, S., Zorrilla-López, U., Sanahuja, G., Arjó, G., Miralpeix, B., Vamvaka, E., Farré, G., Rivera, S. M., Dashevskaya, S., Berman, J., Sabalza, M., Yuan, D., Bai, C., Bassie, L., Twyman, R. M., Capell, T., Christou, P., & Zhu, C. (2013). The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes & Nutrition, 8(1), 29–41. https://doi.org/10.1007/s12263-012-0315-5

Pierce, E. C., LaFayette, P. R., Ortega, M. A., Joyce, B. L., Kopsell, D. A., & Parrott, W. A. (2015). Ketocarotenoid production in soybean seeds through metabolic engineering. PLoS ONE, 10(9). https://doi.org/10.1371/journal.pone.0138196

Pramitha, J. L., Rana, S., Aggarwal, P. R., Ravikesavan, R., Joel, A. J., & Muthamilarasan, M. (2021). Chapter Three - Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients (D. Kumar (ed.); Vol. 107, pp. 89–120). Academic Press. https://doi.org/https://doi.org/10.1016/bs.adgen.2020.11.003

R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/

Rahman, M. C., Rahaman, M. S., Islam, M. A., Omar, M. I., & Siddique, M. A. B. (2021). Deployment Strategies for Golden Rice in Bangladesh: A Study on Affordability and Varietal Choice with the Target Beneficiaries. Bangladesh Rice Research Institute. https://doi.org/10.13140/RG.2.2.14318.33607

Ricroch, A. (2019). Global developments of genome editing in agriculture. Transgenic Research, 28(2), 45–52. https://doi.org/10.1007/s11248-019-00133-6

Rukavtsova, E. B., Alekseeva, V. V, Tarlachkov, S. V, Zakharchenko, N. S., Ermoshin, A. A., Zimnitskaya, S. A., Surin, A. K., Gorbunova, E. Y., Azev, V. N., Sheshnitsan, S. S., Shestibratov, K. A., & Buryanov, Y. I. (2022). Expression of a Stilbene Synthase Gene from the Vitis labrusca x Vitis vinifera L. Hybrid Increases the Resistance of Transgenic Nicotiana tabacum L. Plants to Erwinia carotovora. Plants, 11(6). https://doi.org/10.3390/plants11060770

Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., & Pfeiffer, W. H. (2013). Biofortification: Progress toward a more nourishing future. Global Food Security, 2(1), 9–17. https://doi.org/https://doi.org/10.1016/j.gfs.2012.12.003

Sathish, S., Preethy, K. S., Venkatesh, R., & Sathishkumar, R. (2018). Rapid enhancement of α-tocopherol content in Nicotiana benthamiana by transient expression of Arabidopsis thaliana Tocopherol cyclase and Homogentisate phytyl transferase genes. 3 Biotech, 8(12), 485. https://doi.org/10.1007/s13205-018-1496-4

Scarano, A., Gerardi, C., Sommella, E., Campiglia, P., Chieppa, M., Butelli, E., & Santino, A. (2022). Engineering the polyphenolic biosynthetic pathway stimulates metabolic and molecular changes during fruit ripening in “bronze” tomato. Horticulture Research. https://doi.org/10.1093/hr/uhac097

Schmidt, M. A., Parrott, W. A., Hildebrand, D. F., Berg, R. H., Cooksey, A., Pendarvis, K., He, Y., McCarthy, F., & Herman, E. M. (2015). Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnology Journal, 13(4), 590—600. https://doi.org/10.1111/pbi.12286

Singh, H., & Bharti, J. (2021). Incredibly Common Nutrient Deficiencies. EAS Journal of Nutrition and Food Sciences, 3(6), 175–178. https://doi.org/10.36349/easjnfs.2021.v03i06.006

Singh, M. N., Srivastava, R., & Yadav, I. (2021). Study of different varietis of carrot and its benefits for human health: a review. J Pharmacogn Phytochem, 10, 1293–1299. https://doi.org/https://doi.org/10.22271/phyto.2021.v10.i1r.13529

Sissons, M., Sestili, F., Botticella, E., Masci, S., & Lafiandra, D. (2020). Can Manipulation of Durum Wheat Amylose Content Reduce the Glycaemic Index of Spaghetti? Foods, 9(6). https://doi.org/10.3390/foods9060693

Sun, T., Zhu, Q., Wei, Z., Owens, L. A., Fish, T., Kim, H., Thannhauser, T. W., Cahoon, E. B., & Li, L. (2021). Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds. ABIOTECH, 2(3), 191–214. https://doi.org/10.1007/s42994-021-00046-1

Swapnil, P., Meena, M., Singh, S. K., Dhuldhaj, U. P., Harish, & Marwal, A. (2021). Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology, 26, 100203. https://doi.org/https://doi.org/10.1016/j.cpb.2021.100203

Taqi, M., Rusydiana, A. S., Kustiningsih, N., & Firmansyah, I. (2021). Environmental accounting: A scientometric using biblioshiny. International Journal of Energy Economics and Policy, 11(3), 369–380. https://doi.org/10.32479/ijeep.10986

Tiong, J., McDonald, G. K., Genc, Y., Pedas, P., Hayes, J. E., Toubia, J., Langridge, P., & Huang, C. Y. (2014). HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. The New Phytologist, 201(1), 131–143. https://doi.org/10.1111/nph.12468

Tsypurskaya, E. V, Nikolaeva, T. N., Lapshin, P. V, Nechaeva, T. L., Yuorieva, N. O., Baranova, E. N., Derevyagina, M. K., Nazarenko, L. V, Goldenkova-Pavlova, I. V, & Zagoskina, N. V. (2022). Response of Transgenic Potato Plants Expressing Heterologous Genes of ∆9- or ∆12-Acyl-lipid Desaturases to Phytophthora infestans Infection. Plants, 11(3). https://doi.org/10.3390/plants11030288

Uppal, C., Kaur, A., & Sharma, C. (2021). Genome engineering for nutritional improvement in pulses. In Genome Engineering for Crop Improvement. Wiley Online Library. https://doi.org/10.1002/9781119672425.ch10

Vaupel, J. W., Villavicencio, F., & Bergeron-Boucher, M.-P. (2021). Demographic perspectives on the rise of longevity. Proceedings of the National Academy of Sciences of the United States of America, 118(9). https://doi.org/10.1073/pnas.2019536118

Waltz, E. (2014). Vitamin A Super Banana in human trials. Nature Biotechnology, 32(9), 857. https://doi.org/10.1038/nbt0914-857

Wamiq, M., Alam, K., Ahmad, M., & Luthra, S. (2022). Biofortification in Vegetable Crops. In Modern Concept in Agriculture (Issue September, pp. 141–153). https://doi.org/10.22271/ed.book.1830

Wang, J., Kuang, H., Zhang, Z., Yang, Y., Yan, L., Zhang, M., Song, S., & Guan, Y. (2020). Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. The Crop Journal, 8(3), 432–439. https://doi.org/https://doi.org/10.1016/j.cj.2019.08.008

Wang, X., Yu, C., Liu, Y., Yang, L., Li, Y., Yao, W., Cai, Y., Yan, X., Li, S., Cai, Y., Li, S., & Peng, X. (2019). GmFAD3A, A ω-3 Fatty Acid Desaturase Gene, Enhances Cold Tolerance and Seed Germination Rate under Low Temperature in Rice. International Journal of Molecular Sciences, 20(15). https://doi.org/10.3390/ijms20153796

Wolfgang, P., & McClafferty, B. (2007). HarvestPlus: Breeding Crops for Better Nutrition. Crop Science, v. 47(Supplement_3), S-88-S-105-2007 v.47 no.Supplement_3. https://doi.org/10.2135/cropsci2007.09.0020IPBS

Yuan, Y., Ren, S., Liu, X., Su, L., Wu, Y., Zhang, W., Li, Y., Jiang, Y., Wang, H., Fu, R., Bouzayen, M., Liu, M., & Zhang, Y. (2022). SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. The New Phytologist, 234(1), 164–178. https://doi.org/10.1111/nph.17977

Zeng, Z., Han, N., Liu, C., Buerte, B., Zhou, C., Chen, J., Wang, M., Zhang, Y., Tang, Y., Zhu, M., Wang, J., Yang, Y., & Bian, H. (2020). Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. Annals of Botany, 126(5), 929–942. https://doi.org/10.1093/aob/mcaa115

Zhang, H., Zhang, Z., Zhao, Y., Guo, D., Zhao, X., Gao, W., Zhang, J., & Song, B. (2021). StWRKY13 promotes anthocyanin biosynthesis in potato (Solanum tuberosum) tubers. Functional Plant Biology : FPB, 49(1), 102–114. https://doi.org/10.1071/FP21109

Published

2022-12-01

How to Cite

Wilches Ortiz, W. A., Cruz Castiblanco, G. N., & Sandoval Cáceres, Y. P. (2022). Benefits of transgenic biofortified foods, a review from 2012 to 2022. The Scientific Journal "El Higo&Quot;, 12(2), 81–102. https://doi.org/10.5377/elhigo.v12i2.15229

Issue

Section

Review article