Capacidad reproductiva de Nannochloropsis oculata en diferentes concentraciones de salinidad y fertilizante: Una contribución a la Bioeconomía acuícola
DOI:
https://doi.org/10.5377/ribcc.v6i12.9977Palabras clave:
Bateria, Salinidad, Temperatura, Nannochloropsis, Nutrientes, Bioeconomia AcuicolaResumen
El estudio se centró en contribuir a la Bioeconomía Acuícola evaluando el ritmo reproductivo de Nannochloropsis oculata en dos baterías experimentales con concentraciones salinas de 33 ‰, 25 ‰, 20 ‰, 15 ‰, 10 ‰ y 5 ‰. A cada una se le aplicó dosis únicas de 0.32 ‰ y 1 ‰ de F/2 Guillard, respectivamente. Se realizaron dos experimentos en tiempos de 10 y 23 días a temperatura de 25 ºC. El primer experimento con 0.32 ‰ de F/2 Guillard, N. oculata presentó mayor número de cel/ml en salinidades de 33 ‰ y 25 ‰, a los 8 días de estudio, denotando la afinidad de N. oculata de reproducirse con mayor velocidad en ese rango de salinidad. La importancia del uso de F/2 Guillard fue observada usando 1‰ debido a que la microalga presenta similar número de cel/ml (P≤0.05) en concentraciones salinas de 33 ‰, 25 ‰, 20 ‰ y 15 ‰ y similar concentración a las microalgas cultivadas con 0.32 ‰ de F/2 Guillard en salinidades de 33 ‰ y 25 ‰. La capacidad de N. oculata fue testado en un segundo experimento donde los resultados muestran similar número de cel/ml entre los tratamientos salinos, en ambas baterías, a los 23 días de cultivo. Los resultados muestran que N. oculata puede ser cultivada con bajas concentraciones de F/2 Guillard en rangos de salinidad entre 25 ‰ y 33 ‰, implica reducción de costos.
Descargas
Citas
Alzugaray, R., Puga, R., Valle, S., Morales, O., Grovas, A., López, L., ... & Fujita, R. (2019). Un enfoque multiinstitutional para modelar el beneficio bioeconómico de perspectivas de manejo pesquero en Cuba. Revista Cubana de Investigaciones Pesqueras, 36(2), 0138-8452.
Almendarez, L. C. (2015). La Bioeconomía acuícola como herramienta para la toma de decisiones empresariales. ContactoS, 98, 14-18.
Anderson, L. y Seijo, J. 2010. Bioeconomics of Fisheries Management. Wiley-Blackwell, NJ. 305p.
Álvarez Lajonchére, L., Hernández, O., Comas, A., Martínez, V., y Lozano, B. (1981). Efecto de la reducción de salinidad sobre la tolerancia a altas temperaturas en la microalga Nannochloropsis oculata. Hidrobiológica, 6(1-2), 39-42.
Andrews, T., y Lorimer, G. (1987). Rubisco: Structure, mechanisms and prospects for improvement. En The Biochemistry of Plants, Vol. 10 (Hatch, M. D. and Boardman, N. K., Eds.) pp 131-218, Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-675410-0.50009-9
Barclay, W., y Apt, K. (2013). The microalgae cell with reference to mass cultures: Strategies for bioprospecting microalgae for potential commercial applications. En: Richmond A, Hu Q, editores. Handbook of microalgal culture: applied phycology and biotechnology. 2a ed. Wiley Blackwell, (2013) 69-79. https://doi.org/10.1002/9781118567166.ch4
Fao, W. F. P. (2014). IFAD (2012) The State of Food Insecurity in the World 2012: Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome.
Fernández, F., Sevilla, J. y Grima, E. (2018). Contribución de las microalgas al desarrollo de la bioeconomía. Mediterráneo económico, (31), 309-331.
Ferreira, R., Esquivel, M. y Teixeira, A. (2000). Catabolism of ribulose bisphosphate carboxylase from higher plants. Current Topics in Phytochemistry, 3, 129-165.
Fulks, W. y Main, K. (1991). Rotifer and microalgae culture systems. Proceeding of a US-Asia Workshop. Honolulu, Hawaii: The Oceanic Institute, p.1-364.
Guiry, M. (2013). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org/search/genus/detail/?genus_id=44568; Recuperado en 04 Noviembre 2013
Kozaki, A., y Takeba, G. (1996). Photorespiration protects C3 plants from photooxidation. Nature 384, 557-560. https://doi.org/10.1038/384557a0
Lubian, L., Montero, O., Moreno-Garrido, I., Huerstas, I., Sobrino, C., González, M., y Pares, G. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol. 12, 249-255. https://doi.org/10.1023/A:1008170915932
Lubzens, E., Gibson, O, Mora, O., y Sukenic, A. (1995). Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133, 295-310. https://doi.org/10.1016/0044-8486(95)00010-Y
Martínez, M., Sanchez, R., Meza, E., Ulloa, R., y Saldivar, J. (2016). Síntesis de lípidos de la microalga Nannochloropsis oculata para su uso potencial en la producción de biodiesel. Rev. Int. Contam. Ambie. 33(85-91). https://doi.org/10.20937/RICA.2017.33.esp02.08
Paes, C., Faria, G., Tinoco, N., Castro, D., Barbarino, E., y Laurenco, S. (2016). Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Lat. Am. J. Aquat. Res, 44(2), 275-292. DOI: 10.3856/vol44-issue2-fulltext-9. https://doi.org/10.3856/vol44-issue2-fulltext-9
Pereira, M., Jáuregui, G., Devia, A., y Rojas, J. (2017). Cultivo de microalgas Isochrysis galbana y Nannochloropsis sp. para alimentación de larvas de peces marinos. Mutis, 7(2), 81-85, doi: http://dx.doi.org/10.21789/22561498.1246
Pérsico, M., Moris, M., Tranier, E., Zanazzi, A., Saubidet, A., y Beligni, M. (2011). Evaluación de un sistema exterior de cultivo masivo de la microalga marina Nannochloropsis oculata, en una zona templada oceánica de Argentina. Rev Lattiinoam Biiottecnoll Amb Allgall. 2(1), 30-48.
Ra, C., Kang, C., Jung, J., Jeong, G., y Kim, S. (2016). Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource Technology, 212, 254-261. https://doi.org/10.1016/j.biortech.2016.04.059
Renaud, S., Parry, D., Thinh, L. Kuo, C., Padovan, A., y Sammy, N. (1991). Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J. Appl. Phycol. 3 (1), 43-53. DOI: 10.1007/BF00003918. https://doi.org/10.1007/BF00003918
Sánchez-Torres, H., Juscamaita-Morales, J., Vargas-Cárdenas, J., y Oliveros-Ramos, R. (2008). Producción de la microalga Nannochloropsis oculata (Droop) Hibberd en medios enriquecidos con ensilado biológico de pescado. Ecología Aplicada, 7(1-2), 149-158. https://doi.org/10.21704/rea.v7i1-2.370
Sukenik, A. (1999). In: COHEN Z, (Ed). Chemicals from Microalgae. London: Taylor y Francis, pp. 41-56.
Wei, L., Wang, Q., Xin, Y., Lu, Y., y Xu, J. (2017). Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of rubisco activase. Algal Research. http://dx.doi.org/10.1016/j.algal.2017.07.023
Spolaore, P., Joannis‐Cassan, C., Duran, E., & Isambert, A. (2006). Optimization of Nannochloropsis oculata growth using the response surface method. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(6), 1049-1056. https://doi.org/10.1002/jctb.1529
Xiao, Y., Zhang, J., Cui, J., Feng, Y., y Cui, Q. (2013). Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresource Technology 130, 731-738 https://doi.org/10.1016/j.biortech.2012.11.116
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Iberoamericana de Bioeconomía y Cambio Climático e-ISSN 2410-7980
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright © 2023 Rev. iberoam. bioecon. cambio clim. Universidad Nacional Autónoma de Nicaragua León Colegio Postgraduados y UNAN-León, Escuela de ciencias agrarias y veterinarias/ Departamento de Agroecología/Centro de Investigación en Bioeconomía y Cambio climatico (CIByCC).